
Submitted to VLSI Design

Writing Research Software in a Large Group for the NEMO Project

Gerhard Klimeck, Dan Blanks, Roger Lake, R. Chris Bowen, Chenjing L. Fernando, Manhua Leng,
William R. Frensley*, Dejan Jovanovic, and Paul Sotirelis

Corporate R&D, Texas Instruments Incorporated, Dallas, TX 75265
*School of Engineering, The University of Texas at Dallas, Richardson, TX 75083

The nanoelectronic modeling (NEMO) program is the result of a three-year development effort involving
four universities and the Corporate Research & Development laboratory of Texas Instruments to create a
comprehensive quantum device modeling tool for layered semiconductor structures. Based on the non-
equilibrium Green function formalism, it includes the effects of quantum charging, bandstructure and
incoherent scattering from alloy disorder, interface roughness, acoustic phonons, and polar optical phonons.
NEMO addresses the diverse needs of two different types of users: (i) the engineer/experimentalist who
desires a black-box design tool and (ii) the theorist who is interested in a detailed investigation of the
physics. A collection of models trade off physical content with speed and memory requirements. Access
to this comprehensive theoretical framework is accommodated by a graphical user interface (GUI) that
facilitates device prototyping and in-situ data analysis. We describe a hierarchical software design that
allows rapid incorporation of theory enhancements while maintaining a user-friendly GUI, thus satisfying
the conflicting criteria of ease of use and ease of development. The theory and GUI modules share data
structures that define the device structure, material parameters, and simulation parameters. These data
structures may contain general data such as integer and real numbers, option lists, vectors, matrices and the
labels for both batch and GUI operation. NEMO generates the corresponding GUI elements at run-time for
display and entry of these data structures.

Introduction
At the inception of NEMO in 1993, quantum

transport programs were in their infancy as
compared to the physical comprehensiveness of
semiclassical Monte Carlo simulators. The existing
software only addressed a limited range of quantum
devices and quantum transport theory. The NEMO
project was conceived to create a single software
package that would simultaneously include
bandstructure effects, self-consistent charging
effects, and incoherent scattering effects, and be
flexible enough to model a wide variety of device
designs.

Texas Instruments and the collaborating
universities evaluated a number of different
formalisms (see Fig. 1) and chose the non-
equilibrium Green function (NEGF) approach as
the most general and flexible alternative. The
multiple sequential scattering algorithm was
incorporated within the NEGF formalism and the
other approaches were eventually dropped. The
theory used to generate NEMO calculations is
presented in other publications1,2

.

This paper addresses the software engineering
aspects of writing NEMO in terms of the basic
software design and some of the most important
software methods we used to facilitate the tasks of
both the programmer and the user. The first section
reviews the fundamental program design. This is
followed by a discussion of the event-driven

Multiple Sequential
Scattering

Density
Matrix

Wigner
Function

Quantum
Monte Carlo

Stochastic
Schrödinger

Single Particle
Schrödinger

Ψ(r,t)

Non-Equilibrium
Statistical Mechanics

〈 Ψ(r’,t’) Ψ(r,t) 〉

Non-Equilibrium
Green Function

Formalism

Direct
Evaluation

Perturbation

FIG. 1. Quantum transport theories pursued
during the NEMO project. The light gray
background indicates the incorporation into the
NEGF approach. The dark background
indicates approaches that were dropped.

methodology used to construct the simulation
parameters user interface. The next section reviews
the method used to transfer data between NEMO
data structures, files, and the graphical user
interface. The concluding section summarizes the
development environment and software tools used
to construct NEMO.

Fundamental Program Design
The basic content of the NEMO software is

shown in Fig. (2). At the heart lies the NEGF
formalism and open system boundary conditions.
The next shell lists the physical models which may
be included within several different
approximations. The outer shell lists the software
algorithms and features that support the interior
calculation code.

Batch vs. GUI Program Design
In its original form, NEMO was a command-

line program. This “NEMO-Batch” version was
later augmented with a graphical user interface
(GUI) that provides graphical methods for entry of
input parameters, plots calculation results both
during and after the calculation, and allows the user
to compare data and calculations all in the same
program. Unlike NEMO-Batch, which performs
the simulation without interruption until
completion, the NEMO-GUI program allows the
user to start, interrupt, and abort calculations at any
time.

Despite the obvious advantages of the GUI
interface, NEMO-Batch was still very useful.
Since it excludes all GUI-related functionality,
NEMO-Batch uses less memory, runs faster, and is

easier to port to different computer platforms than
NEMO-GUI. Consequently, we devised a method
to retain the NEMO-Batch code as the heart of the
NEMO-GUI program. To completely understand
how NEMO operates, we must examine the design
of both the batch and GUI versions of NEMO.

Figure 3(a) illustrates the fundamental
operation of NEMO-Batch. The Input Deck is a
text file that contains the input parameter required
for the calculation. The user calls NEMO-Batch on
a command line using the filename of the Input
Deck as the sole argument. NEMO-Batch reads
and processes the Input Deck, runs the
computation, stores the results in output data files,
and then exits. A NEMO-Batch run can perform
the calculation for a single bias point or a sequence
of bias points. While a current vs. voltage
calculation is a standard output, many other outputs
are available, including charge density, band
profile, and transmission coefficients.

As shown in Fig. 3(b), the NEMO-GUI
operation includes most of the NEMO-Batch code.
This design requires a separation of the GUI and
batch code into different modules. The NEMO-
GUI compilation includes all of the program
modules whether they are batch or GUI-related.
The NEMO-Batch compilation excludes purely
GUI modules from the executable. There are some
cases where a mixture of batch and GUI code is
unavoidable, particularly in message routines and
the functions that plot and store calculation results
during the calculation. For those situations, a
preprocessor-defined flag effectively deletes GUI-
related code from any routines with a mix of batch-
GUI code.

Both NEMO-Batch and NEMO-GUI use the
same verification procedures to check the validity
of the input parameters. The validation routine
determines the parameters required for the
requested calculation and checks for their presence
in the input deck. If any material or model
parameters are missing, NEMO provides default
values from its internal database. In this manner,
users can either accept the default parameters or
input their own parameters. This feature addresses
the needs of the device physicist who wants
detailed control over the calculation process and
the device engineer who only wants to determine
general device behavior as quickly as possible.

Formalism
Green Function Theory

& Boundary Cond.

Res
on

an
ce

Fi
nd

er

Hybrid

C, FORTRAN

FORTRAN90

Band-

structure

Char
ging

Interface
Roughness

Phonons

Allo
y

Diso
rd

er

Documentation

ToolIonized
Dopants

Physics

Software Engineering
Object-Oriented Principles

Gra
phica

l

Use
r I

nter
fac

e

Material
Param.

Database

Batch Run

Interface
Library of Examples

Novel
Grid Gen.

FIG. 2. Content of the NEMO software.

Even though they use the same validation
routines, NEMO-Batch and NEMO-GUI have very
different means of responding to validation errors.
For NEMO-Batch, the validation routine only
needs to check parameters read from the Input

Deck. If an error occurs in the verification
procedure, NEMO-Batch must exit and report the
error to a log file.

FIG. 3. Basic design of NEMO program for (a) batch and (b) GUI operation. Input parameters are classified as
device structure parameters, material parameters, and model parameters. Device structure parameters specify
the device geometry, layer composition, and any other external physical parameters such as the terminal
connections and temperature. Material parameters include the band structure information such as effective
mass, energy gaps, and band offsets. Model parameters specify the theoretical models used for the calculation
such as band structure, charge self-consistency, scattering, simulation domains, and grids.

(a)

(b)

NEMO-GUI not only checks the Input Deck
values, but also validates parameters as the user
enters them into the GUI. If an error occurs for
either case, NEMO-GUI displays an error message
with advice on why the error occurred and how to
remedy the problem. The user must input the
correct information before starting the calculation
or saving the input parameters. This procedure
ensures that an Input Deck created using NEMO-
GUI will be valid for NEMO-Batch operation.
Consequently, even when using NEMO-Batch for
the calculation, NEMO-GUI provides the most
convenient method to construct the input deck.

Simulation Parameter Input Methodology
NEMO incorporates a wide spectrum of

models with varying tradeoffs between accuracy
and speed. This range of models is essential given
the large range of devices we wish to model for
different scientific and engineering applications.

The downside of this flexibility is that NEMO
has over 100 simulation parameters, many of which
interact in complex ways. In traditional simulators,
the user must comprehend all of the simulation
parameters, carefully select the essential parameters
for a particular study, and ensure that all parameter
values are self-consistent. This can be a daunting
task for even the simplest simulation.

It is equally difficult for the programmer to
deal with for two reasons: (1) New models and
parameters added to the simulator must be reflected
in the GUI as quickly as possible, and (2)
simulation parameters should only be defined in a
single module accessed by both the theory and the
GUI to ease the code maintenance.

Our approach to this problem was to create the
GUI interface at run-time based on a hierarchical
system of simulation parameters. These simulation
parameters are defined in a single module shared
by the GUI and theory code. A key advantage to
this method is that it insulates changes in the
simulation parameter set from changes in the GUI
and vice versa. The next section reviews the
method used to create the run-time GUI interface.

The most basic level of the hierarchy directs
the choice of fundamental models such as the
potential, band structure, and scattering models.
NEMO determines the data structures required by
these models and creates a new GUI interface. The
GUI displays default choices that the user can
either accept or change.

When the user prompts NEMO to accept these
parameters, NEMO tests for valid user input and
enforces consistency between interacting
parameters. For example, if one parameter value
must be larger than another parameter, NEMO
forces adherence to this rule.

After validating the selected options, NEMO
determines the data structures required by the next
level on the hierarchy, creates and displays a new
GUI interface, and repeats the process until the
parameter set is sufficient to run the simulation. If
the user goes back to any portion of the hierarchy
to select new options, parameters at higher levels of
the hierarchy remain intact, while parameters at the
lower levels are added and subtracted as
appropriate.

This event-driven procedure only presents the
parameters needed by the selected models. All
other parameters are either hidden or are disabled
from user entry. Limiting the parameter display in
this manner greatly reduces the sheer number of
simulation parameters presented to the user. Since
NEMO provides default values for all simulation
parameters, the user can often specify a few of the
top-level parameters and then prompt NEMO to
use the default values for the remainder of the
hierarchy. In most cases, this approach generates a
reasonable simulation. Nevertheless, the user has
the option of adjusting all parameters down to the
lowest level of the hierarchy, thus fulfilling a
primary goal of NEMO to give the user full control
over all aspects of the simulation.

Data Transfer and Run-Time GUI Creation
The NEMO program must transfer large

amounts of information between data structures,
files, and the GUI. For a small program, it is
sufficient to write customized routines for these
operations, but this approach became impractical as
NEMO grew in size. To resolve this problem, we
designed a generic algorithm for transferring.
information to and from data structures. In addition
to transferring information, this same algorithm
creates portions of the GUI at run-time for
parameter entry. A detailed description of this
algorithm is beyond the scope of this paper, but due
to its importance to NEMO and its utility to both
the user and the programmer, we will highlight the
basic features.

We refer to this process as the
MemberDescriptor algorithm. We defined a
MemberDescriptor data structure that contains all

of the information needed to translate values
between a data structure member and its
destination. The MemberDescriptor includes a
character string identifier, the memory location of a
data structure member relative to the data structure
address, and an enumerated flag that defines the
data type (number, character string, option list,
etc.). Each data structure has at least one
associated MemberDescriptor array. Each element
of the MemberDescriptor array corresponds to one
of the data structure members. To transfer
information from the data structure, the translation
routine uses the base address of the data structure
and the MemberDescriptor array to derive the
values of each data structure member. The inverse
of this procedure transfers values from either the
GUI or a file into each data structure member.

For example, assume we wish to transfer the
value of an integer data structure member to a file.
The translation routine adds the relative position of
the integer data structure to the base address of the
data structure. To determine the actual integer
value, the translator casts the contents of the
memory location to an integer. The derived integer
value is stored in the file in the general format:

<identifier> = <value>

where the <identifier> is the character string
identifier set in the MemberDescriptor data
structure and <value> is the integer number.
Reversing this process inputs the same information
from the file and stores the integer value into the
data structure.

This procedure is used in many programs as a
generic method for file input and output3. For
NEMO, we extended the algorithm to transfer
information between the GUI and the internal data
structures. Figure 4 illustrates how data values are
transferred between data structures and a GUI
panel consisting of an option list, a text box, a
check box, and a graphics plot with adjustable
cursors.

For the simulation parameter input method
discussed in the last section, we use the
MemberDescriptor algorithm to create the GUI
interface for each hierarchy. This dynamic design
vastly enhances the usability of the GUI compared
to a traditional static design that would require a
fixed set of GUI elements throughout the program
operation.

The MemberDescriptor approach saves a great
deal of time and trouble for the programmer.

Adding a new data structure no longer requires
customized code to transfer values between data
structures, files, and the GUI. Only a new
MemberDescriptor array is needed. In fact, even
software team members who are totally ignorant of
GUI programming techniques can effectively
“program” the GUI in this manner.

Development Environment

The following summarizes key elements of the
environment used to create the NEMO simulator:

Programming Language. Most of the program was
coded using ANSI C with some FORTRAN 77 and
FORTRAN 90 code used in modules that required
the greatest speed.

Development Platforms. Code development
occurred on Unix workstations either using HP
Apollo or SGI platforms. We also ported NEMO
to the Sun, IBM, and DEC Unix platforms.

Data
Structures

Translator

FilesGUI

C
re

at
es R

eads C
re

at
es R

eads

FIG. 4. Generic data transfer between NEMO
data structures, the graphical user interface, and
files.

Program Library System. To facilitate code
sharing and revision updates, we utilized a standard
program library system called RCS (Revision
Control System). The RCS system manages a
check-out and check-in system that only allows one
programmer to edit a file at a time. The RCS
system also stores changes between code versions
and can recover any previous version of the project.

Graphical User Interface. The NEMO GUI was
written in Motif which uses C-callable routines to
create and control GUI objects on a wide variety of
Unix platforms.

GUI Tools. The static elements of NEMO were
designed using the XDesigner software tool. The
spreadsheet table and the 2D, 3D, and contour plot
tools were programmed using the 3rd party XRT
Widget set.

Run-time Debugger. NEMO relies heavily on
dynamic memory creation techniques that are
extremely difficult to debug with conventional
debuggers. The Purify debugger provided the
means to find memory violations incurred at run-
time and greatly simplified the task of tracking
down these errors.

Conclusion
We have presented highlights of the NEMO

software project germane to construction of a large-
scale device simulator. It is hoped that these
methods will prove useful to other groups engaged
in similar types of software projects, whether or not
they pertain to quantum device simulations.

References

[1] P. Roblin and W. Liou, Phys. Rev. B 46, 2416
(1993).

[2] R. Lake, G. Klimeck, R. C. Bowen, and D.
Jovanovic, to appear in J. Appl. Phys. June
1997 (1997).

[3] A. Nye and T. O’Reilly, X Toolkit Intrinsics
Programming Manual, OSF/Motif 1.2 edition, Vol.
4 of O’Reilly X-Windows Series, Chapt. 10
(1993).

Biographies
Gerhard Klimeck is a Member of the Technical

Staff at Texas Instruments Incorporated. His
present research interest is the writing the NEMO
quantum device simulator.

Dan Blanks is a Member of the Technical Staff
at Texas Instruments Incorporated. His present
research interest is the design and coding of the
graphical user interface of the NEMO program.

Roger Lake is a Member of the Technical Staff
at Texas Instruments Incorporated. His present
research interest is scattering effects in RTD’s.

R. Chris Bowen is a Member of the Technical
Staff at Texas Instruments Incorporated. His
current research interest is full-band modeling of
quantum electron transport in Silicon and III-V
structures.

William R. Frensley is a Professor in the
Electrical Engineering Dept. at the U. of Texas at
Dallas. His current research interest is modeling of
quantum electron transport in nanoelectronic
devices.

